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Abstract

Waveform diversity indicates the ability to adapt and déifgr dynamically the waveform to the
operating environment in order to achieve a performanae g&r non-adaptive systems. This technique
can allow one or more sensors to automatically change dpgraarameters such as frequency, pulse
repetition time, transmit pattern, modulation, etc. Thespnt lecture starts with an overview concerning
the role of the waveform diversity in history, mathematiasd music from the epoch of Pythagoras,
continuing with the studies of Galileo, Fourier, and MaxwEkamples of waveform diversity in nature,
such as the bath sonar signal, the sounds of whales, and sh&ccmicrowave background radiation
are presentéd A tutorial introduction to the concept of ambiguity furani, its relevant properties, and
its role as an instrument to quantify the quality of a wavefofollows. Precisely, after a short review of
the most common radar signals and their ambiguity functitires effects of a possible signal coding is
thoroughly described. Amplitude, phase, and frequencgsa@de considered, even if a special attention

is deserved to the class of frequency coded waveforms thraugostas sequence.
Keywords. Ambiguity Function, Radar Coding, Coherent Train of DiveeRulses.

I. INTRODUCTION

The waveform exploited by the radar is responsible of résmiuaccuracy, and ambiguity of
the target range and radial velocity measurements. Whilgeras associated with the delay of
the received signal, radial velocity depends on the Dopipégruency shift.

Waveform design algorithms usually anticipated their iempéntation by many years, due
to complexity and hardware limitations [1]. For instandee tconcept of pulse compression,
developed during the World War II, gained renewed interegy avhen high-power Klystrons
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became available [2]. In other words, what seems unpradtday, may not be definitely ruled
out in the near future. The lack of signal coherence, whiatlpded the application of signal
compression during the World War Il is today easy. Maybe littesar power amplifiers, required
to implement amplitude modulated radar signals, will ngiresent a technological limitation
tomorrow.

If a matched filter is used at the receiver, the ambiguity fiemcrepresents a suitable tool
to study the response of the filter in two dimensions: delay Roppler. The constant volume
underneath the squared ambiguity function involves somdetoffs in signal design. Precisely,
a narrow response in one dimension is accompanied by a psponse in the other dimension
or by additional ambiguous peaks. Moreover, if we prefer igodus peaks to be well spaced
in delay, we have to accept them closely spaced in Dopplef yare versa). If we want a good
Doppler resolution, we need long coherent signal durations

Several signals are used for different radar applications systems. Modern pulsed radars
generally use pulse compression waveforms characterizédyh pulse energy (with no increase
in peak power) and large pulse bandwidth. As a consequdmeg provide high range resolution
without sacrificing maximum range which depends on the peisgy.

Unfortunately, there are not easily-handled mathemateézzdiniques to calculate a signal with
a prescribed ambiguity function. It follows that the desigiha radar signal with desirable
characteristics of the ambiguity function is mainly basedtloe designer’s prior knowledge of
radar signatures as well as on “trial and check procedures”.

In this lecture, we first present (Section Il) the mathenashtaefinition of the ambiguity
function and describe its relevant properties. Then, weexplore, in Section lll, the ambiguity
function of some basic radar signals: single-frequencyargpilar pulse, Linear Frequency
Modulated (LFM) pulse, and coherent pulse train. HencegitiSn 1V, the conflicts in designing
suitable waveforms for different applications are disedssadar coding is presented as a suitable
mean to achieve ambiguity function shaping. Several tegles based on frequency and phase
coding are presented; the ultimate goal is to segregate dheme of the ambiguity function
in regions of the delay-Doppler plane where it ceases to beaetipal embarrassment [3]. In
Section V, the merits and the drawbacks concerning the useharent trains of diverse pulses

is addressed. Finally concluding remarks are drawn in Qedti.
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II. AMBIGUITY FUNCTION: DEFINITION AND PROPERTIES

This function was introduced in signal analysis by Ville [d@hd in the radar context by
Woodward [3]. However, it was known in thermodynamic, sid8@32, due to Eugene Wigner
(Nobel prize) who studied quantum corrections to classtaistical mechanics [5].

The ambiguity function of a signal whose complex envelopdeisoted byu(t) is defined as

[X(r, )| =

/_OO u(t)u™(t + 1) exp(j2mvt)dt| (1)

o0

where(-)* represents the conjugate operagos; v/—1, |-| is the modulus of a complex number,
7 and v are the incremental delay and Doppler frequency shift gmdy. Otherwise stated,
it is the modulus of a matched filter output when the input isapler shifted version of the
original signal to which the filter is actually matched. Itlfovs that| X (0, 0)| coincides with the
output when the input signal is matched to the nominal detely@oppler of the filter; non-zero
values ofr andv indicate a target from other range and/or velocity.

Assuming thatu(t) has unitary energy,X (7, v)| complies with the following four relevant

properties.

1) Maximum Value Property.
[ X(7, 1) < 1X(0,0)] =1, )

the maximum value of the ambiguity function is reached (farv) = (0,0) and is equal
to 1.

2) Unitary Volume Property.

/ / | X (7, v))? drdv =1, (3)
the volume underneath the squared ambiguity function isoni
3) Symmetry.
|X(7-7V)|:|X(_T7_V)| ) (4)

the ambiguity function shares a symmetry property aboubtiggn.

4) Linear Frequency Modulation (LFM) Property.
If | X(7,v)| is the ambiguity function corresponding tdt), then | X (7,v — k7)| is the
ambiguity function ofu(t) exp(jrkt?).
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A more concise way of representing the ambiguity functionsists of examining the one-

dimensional zero-delay and zero-Dopptetts The cut of| X (7, v)| along the delay axis is
X0 = | [t e+ i = R0, ©

where R(7) is the autocorrelation function of(¢). The cut along the Doppler axis is

/_OO |u(t)]? exp(j2mut)dt

o0

[ X(0,v)| =

: (6)

which is independent of any phase or frequency modulatidheoinput signal. Further interesting

properties of the ambiguity function can be found in [6]. &y in [1], the concept of periodic

ambiguity function is presented and its connection withigldliscussed.

Il. AMBIGUITY FUNCTION OF BASIC RADAR SIGNALS

In this section, we present the ambiguity function of somsidaignals (single frequency
rectangular pulse, LFM pulse, and coherent pulse trainglji7,8] and discuss their suitability
for radar applications.

A. Rectangular Pulse

The rectangular pulse of length and unitary energy is given by

u(t) = %rect(%)

and the corresponding ambiguity function is

< _ m> sin[mt,y (1 — |7/t,)v]

t mty(1 = [7]/tp)v

= ' <1 — ‘tﬂ) sinclt,(1 —|7|/tp)v]|, || <ty

p p

| X (7, v)| =
0 elsewhere

(7)
In Figures la-1c, (7) is plotted together with the contourd ¢he cuts along the delay and
Doppler axes. Notice thd®) is limited to an infinite strip whose size on the delay axits
As to the cut atr = 0, it exhibits the first nulls at,,,,; = ii and, since the sirje) function
has a peak sidelobe at13.5 dB, the practical extension of the ambiguity function aldhg
Doppler axis can be considerédt,.
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Figure 1a: Ambiguity function of a constant frequency rectangulatspwof lengtht,.
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Figure 1b: Ambiguity function contours of a constant frequency ragiaar pulse of length,,.

In general, the square pulse is not a desirable waveform &r@ulse compression standpoint,

because the autocorrelation function is too wide in timekinmuit difficult to discern multiple

The function redtr) is equal tol, if |z| < 1/2, and is equal td) elsewhere. The function sific) is defined as sir@) =
sin(mzx)
T
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Figure 1c: Ambiguity function of a constant frequency rectangulatspwof lengtht,,. a) Zero-Doppler cut. b)

Zero-delay cut.

overlapping targets.

B. LFM Pulse

The LFM pulse orchirp is commonly used in radar and sonar applications. It hasdhamage
of greater bandwidth while keeping the pulse duration shod the envelope constant. The

complex envelope of a LFM pulse, with instantaneous frequéftt) = kt, is

1 t
t) = —rect( — ikt?
ult) = e (tp)expm ),

and the corresponding ambiguity function is given by

‘ ( R ‘tﬂ) sinc(t, (1 — |7]/t,)(v — k7)]

) ’T‘ < iy,
p
| X(r,v)| = (8)

0 elsewhere

In Figures 2a-2c, (8) is plotted together with the contourd ¢&he cuts along the delay and
Doppler axes.
Notice that the cut along the Doppler axis £ 0) is the same as in Figure 1c-b. On the

contrary, the cut along the Delay axig £ 0) is deeply different from Figure 1c-a: %ti =
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Figure 2a: Ambiguity function of a LFM rectangular pulse of length and with kz2 = 10.
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Figure 2b: Ambiguity function contours of a LFM rectangular pulse ehgtht, and with kit = 10.

t,Af >4 (Af is the total frequency deviation), it exhibits the first udit
IR I
Tnull = k’tp - Af .

This means that theange windowhas been compressed by a factoe= ¢,A f, which is usually
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Figure 2c: Ambiguity function of a LFM rectangular pulse of length and with k:tf, = 10. a) Zero-Doppler cut.
b) Zero-delay cut.

referred to as compression ratio. Notice also that the amtlgigunction volume is mainly
concentrated on a diagonal ridge.

Slight Doppler mismatches for the LFM pulse do not changegimeral shape of the pulse
and reduce the amplitude very little, but they appear tot gh#é pulse in time. Thus, an
uncompensated Doppler shift changes the target’s appamage; this phenomenon is called
range-Doppler coupling.

Finally, we just mention that non-linear FM pulses can beceored (see for instance [8] and

[1]).

C. Coherent Pulse Train

The complex envelope of a coherent pulse train, composel legually spaced pulses, can

be written as

1 N
u(t) = N ;Un(t —(n—1)Tk) )

where T}y is the pulse repetition period ang,(t) is the complex envelope of the-th unitary

energy pulse. Assuming that the pulse train is uniform (,g¢) = uc(t), n = 1,...,N) and
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that the separation between pulsEg/2 is greater than the pulse duratiep the ambiguity

function of (9) can be expressed as

N-1

Xel=5 > |Xelr—pTav)

p=—(N-1)

sinfrw (N — [p]) Ty
sin(mvTg)

, (10)

where|X¢(r,v)| is the ambiguity function ofio(¢).

In Figure 3, we assume single-frequency rectangular pulSes 6, Ty = 5t, and plot (10)
in the range-Doppler dom&nDue to its shape (10) is often referred tolzed of nails The
zero-Doppler cut shows that there are multiple triangulardews: the separation between two
consecutive peaks is equal to the pulse repetition pérjodoreover, all the triangular windows
have the same widtht,, but their height decreases as the distance from the omgreases.

As to the cut forr = 0, there are multiple peaks spaced apbfiz and N — 2 smaller
sidelobes between them. The first nulls occurat +1/NTx, namely the width of the main

peak (in Doppler) is ruled by the length of the Coherent Pssicey Interval (CPI).

e

Sz ey

Sl
——

e

e

s

vINTo 0

Figure 3: Ambiguity function of a coherent train of uniform pulsestiwiV = 6, pulse lengtht,, and pulse

repetition periodl'r = 5t,,.

2In the following, the MATLAB toolbox of [9] is used to plot thembiguity functions.
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IV. CODED RADAR SIGNALS

The ambiguity function of a coherent pulse train allows ampgak narrow both in range and
in Doppler, but exhibits some peaks with almost the same itidpl as the main peak. These
might be deleterious and can lead to range/Doppler amieguiery difficult to resolve.

If we wish to maintain a very narrow main peak but cannot acttepadditional peaks typical
of the bed of nails we can spread the volume in a low but wide pedestal arounththie peak.
This kind of ambiguity function is referred to #sumbtackshape and can be obtained considering

coded radar signals.

A. Frequency Coding: Costas Sequences

The complex envelope of a frequency coded pulse of lehgtian be written as

Z un(t — (n — 1)ty , (11)
tb
where
exp(j27 fut) 0<t<t,
un(t) = (12)
0 elsewhere
ty is the length of each subpulse (time-slot duratidft, = ¢,), the frequency shift in the-th

time slot is f,, = a,/t;,, while the hopping (coding) sequence is
{a,} =a1,...,an, a, €4{0,...,N —1}.

The frequency history of (11) can be represented througltadeng matrix (Table I) where the
horizontal axis, representing time, is divided & time-slots of lengtht, and the vertical axis
is used to represent equally spaced frequencies. (fhe)-th entry of the binary matrix can
assume only two valueg:if the h-th frequency is transmitted in theth time slot,0 elsewhere.

Obviously, there is only d& per column.

2-10 RTO-EN-SET-119(2009)
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0(1/0(0]0]0/0
0(0(0(1]0]0/0
0/0/0(0]1]0/0
L]0]0]0/0]0]0 Frequency
0/0/0(0]0]0]1
0/0/0(0]0]1/0
0(0/1(0]0]0/0
Time

Table I: Binary matrix representation of frequency coding.

The corresponding ambiguity function can be evaluatedutjinahe expression

N N
1 .
| X (7, v)] = ¥ mZ::lexp(j%T(m — 1)vty) [@mm(T, v) + n:;;#n D, (7 — (M — n)ty, V)] ‘
| (13)
where
< — ‘tL|> sSind g ) exp(—J Bmn — J27fur), |7 < 1,
b
D, (T, 1) = (14)
0 elsewhere
and

U = (f = fo—v) (o — |7])
5mn = 7-[-(fm_fn_V)(tb_{"r)'

Slightly different codes can strongly affect the ambiguitpction of the signal; hence it is of
interest to present a methodology which roughly prediatsaimbiguity shape. Such a technique
is based on the observation that the cross correlation ketwignals at different frequencies
approaches zero when the frequency difference is large refipect to the inverse of the signal
duration (or equal to multiples of that inverse). The preditis possible overlaying a copy of
the binary matrix on itself, and then shifting one relativetlhe other according to the desired
delay (horizontal shifts) and Doppler (vertical shifts).cAincidence of two elements in the

matrix denotes a peak of amplitude one in the predicted amtiidunction, two coincidences
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Figure 4a: Ambiguity function of a Costas signal with coding sequefige6, 0, 5, 4, 1, 2).

a peak of amplitude 2, and so on. The maximum number of canciels is the number of
frequencies IV in our example), and can be reached only in the origin (zetaydand zero
Doppler). Normalizing the maximum peak At we can assume a coincidence equal to a peak
of amplitude%.

Definition 1.A coding sequence is a Costas code [10] if all the non-zeribssbii the binary
matrix do not lead to more than one coincidence.

In Figure 4a, we plot the ambiguity function of a Costas coplelde with/N = 7 and coding
sequencday,...,ay) = (3,6, 0, 5,4, 1, 2). The thumbtack nature of the ambiguity function
is clearly evident. Moreover, in Figure 4b, we plot the camsoof (13) for| X (7,v)| = 0.125.
Notice that there is a similarity between Figure 4b and tlielebe matrix [1, p. 77] of the
coding sequence (Table II). In Figure 4c, we plot the aut@tation function (zero-Doppler
cut): as expected, there are nullsrat kt,. Moreover, according to Property 4 of the ambiguity
function, we do not need to plot the zero-delay cut, sinceoésdnot depends on the frequency

modulation, but only on the magnitude of the unmodulatedequl
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UNCLASSIFIED/UNLIMITED



35 =

30

25—

o

S22

15

10+

5k

0 I I

Figure 4b: Ambiguity function contours af.125 of a Costas signal with coding sequer(8e6, 0, 5, 4, 1, 2).

Sidelobe matrix

6400000100 0]0}]0]0]O0
500100} 0j01,0]0}07]0]O0

4p 01001000} 1T|0]010]O0

Doppler 3fojo0jo0} 11,101 ,0]0}07]0]O0
200101 1})07j00|0}1}1]0]O0
ry1(0j0}jo0}1}y1(0f1;0,1{110]0
ofojojojoro0yp0|7,010]0}707]07]O0
—6|-5|—-4|-3|-2|-1]0|+1|+2|+3|+4|+5|+6

Delay

Table I1: Sidelobe matrix of a Costas signal with coding sequeiics, 0, 5, 4, 1, 2).

Unfortunately, it does not exist a constructive procedoredtermine all the possible Costas
sequences of a fixed length, nor how many they are. To circnttiis drawback, two approaches

can be followed.
« An exhaustive search among all th8 possible sequences of lengif
« A constructive procedure to determine a subclass of péaticCostas sequences.
The first method needs grid computing, and cannot providg hgrg sequences. For example,

using a grid of more tharr00 processors, a complete search of Costas array of ledgth

RTO-EN-SET-119(2009) 2-13
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Figure 4c: Autocorrelation function of a Costas signal with codingjsence(3, 6, 0, 5, 4, 1, 2).

requires more thad years [11]. Actually, the public database of Costas arraygains all the
sequences starting from the unique sequence of lenhgtip to the204 sequences of lengtki
[11]. Moreover, the ratio between the number of lenjtifCostas sequences and tNé possible
sequences, decreases very quickly [11], namely it is evewr difficult to find a Costas sequence
increasing the length.

A different construction technique is based on the theonGafois finite fieldd. Starting
from a primitive element of7F'(N), i.e. an element of the field that can generate all the others
elements but foo), it is possible to conceive several procedures to cons&rbstas sequence.
The most used techniques are thelch 1 the Welch 2 the Golomb 2 the Lempel 2 and the
Taylor 4. Let us now illustrate how th&Velch 1procedure can be implemented.

Choose a lengthv > 3 such thatNV = p — 1, wherep is a prime number. Find a primitive
elementa of GF(p). Numbering the columns of the array in Table Il with=10,1,2,...,p—2
and the rows withh = 1,2,...,p— 1, we put al in position (k, k) if and only if » = o* (mod
p). For example, let us considé¥ = 4, sop = 5. A primitive element of GF'(5) is 2, since

the elementq1,2,3,4} can be obtained a&°, 2!, 23, 22} (mod p). Now, we can construct the

%In the following, a Galois field containing the elements fromo N — 1 will be denote byGF(N).

2-14 RTO-EN-SET-119(2009)
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following matrix

01|23
1170010
2110|1100
Frequency.
310(0(01
41010110
Time

Table I11: Welch | construction matrix.

which provides the Costas codg, 2, 4, 3).
Finally, in Table 1V, we present a short list of procedurebjali can be used to obtain Costas

sequences whose length ranges betweand 30 [12].

Order Working constructions Order Working constructions
_ _ 16 Ty, Wi, W3, L3, G
- - 17 To, Wa, Ly, Go
3 T, Wa, Ly, Go 18 Wi
4 T, W1,G3,Gy, G5 19 Wo
5 To, Wa, Lo, Ty, G, G5, G4 20 Gs
6 T, W3, Lo, Go, G5 21 Wa, Lo, G
7 Wo, Lo, Ty, G 22 T, W1, G3
8 T, Ws, Lz, G3 23 To, Lo, Gy
9 Wa, La, Go 24 G3
10 Ty, Wy, W3, L, G5 25 Ly, Gy
11 To, Wa, Lo, Go 26 W3, Lo, Go
12 Wi, Gy 27 Wa, La, Ty, G
13 Wy, G3 28 Ty, Wi,Gs, Gy
14 Ly, Gy, G3 29 To, Wa, Lo, Go, G5
15 Wy, Ly, Ty, G 30 W3, Lo, Go
Table IV

Constructions that successfully produce Costas arraysdair & 30.

RTO-EN-SET-119(2009) 2-15
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Figure 5. Ambiguity function of a Costas sequence of lendth

The ambiguity function behavior of the Costas coding is npomnounced for long sequences.
In Figure 5, we plot the ambiguity function of a Costas segeeof length40 [1]. This last
example of a relatively long Costas signal indicates thatltimger the sequence, the closer its
ambiguity function to the thumbtack shape. Regarding toziw®-Doppler cut, the sidelobes
are usually below-26 dB. However, the near sidelobés /N < 7 < t,) are higher, decaying
from —13.7 dB in a manner typical of the autocorrelation function sidbels of a signal with
a rectangular spectrum. Indeed, the spectrum of our relgtilong Costas signal is nearly

rectangular.

B. Frequency Coding: Pushing Sequences

This class of frequency coded signals has been introduceghayg and Bell in [13].

Definition 2.For the ambiguity function of a frequency coded wavefornslear area of size
sis a connected area centered at the origin of(the)-plane, wherdr| < st, and|v| < s/t ,
such that no sidelobe peaks (of height greater tha¥i) are present in this area.

A frequency-coding sequence having the ambiguity functigtih a clear area of size is
called a pushing sequence with powemwheres > 1.

Of particular relevance are the codes which are both Costdspashing (Costas-pushing
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IX(v)l

Figure 6a: Ambiguity function of a Costas-pushing sequence of lerigth

sequences). They share some interesting symmetry prepd@roupD, Dihedral Symmetry
Property) [13] which permit to derive more pushing-Costgugnces from a given one. More-
over a Costas sequence, derived fromTaglor 4 (7}) construction, is also a pushing sequence
of power1.

In Figures 6a-6b we plot the ambiguity function and the corgaat|X (r,v)| = 0.1667 of
a Costas-pushing coded pulse with= 5 and coding sequende,...,ay) = (1, 3, 0, 4, 2).
The clear area and the thumbtack nature of the ambiguitytibmcan be directly seen from

the figures.

C. Phase-Coded Radar Signals

A pulse of duratiory,, is divided into N bits (chips) of identical duratiot), = ¢,/N and each

of them iscodedwith a different pulse value. The complex envelope of thespheoded pulse

IS given by
N
1 t—(n— 1)tb]
u(t) = — uprect| ——— (15)
0= =

whereu,, = exp(j¢,) and the set oV phaseq ¢y, ¢, ..., ¢n} is thephase codassociated with
u(t). Criteria for selecting a specific code are the resoluti@perties of the resulting waveform

(shape or ambiguity function), frequency spectrum and #se ¢hrough which the system can be

RTO-EN-SET-119(2009) 2-17
UNCLASSIFIED/UNLIMITED



UNCLASSIFIED/UNLIMITED %?

Waveform Diversity: Past, Present, and Future ORGANIZATION

25

M/ g% :

0
% 4 5

)
T

Figure 6b: Ambiguity function contours a.1667 of a Costas-pushing signal with code sequefices, 0, 4, 2).

implemented. However, finding a code which leads to a preaéted range-Doppler resolution
is very complicated; choosing a code ensuring a good autation function is easier.

The autocorrelation function of a phase-coded pulse is éireayus function of the delay.
The properties of the autocorrelation function should bangred, in general, for all-t, <
T < t,. It can be shown [1] that it is sufficient to calculate the etation function at integer
multiples of the bit duration. The other can obtained cotingcthe values at = kt;, using
straight lines in the complex plane. Thus, the optimizatdrthe continuousautocorrelation
peaks is simplified to the minimization of tliliscretecorrelation function Ry | values [1].

1) Barker codesTheBarkercodes [14] were designed as the setdVdbinary pulses yielding
a peak-to-peak sidelobe ratio equal Aa In [14] and [15] all the known binary sequences
complying with this property are reported. It has been shdwat no Barker codes exist for
13 < N < 1.898.884 and for all oddN > 13 [16]. In Figure 7a the autocorrelation function for
a Barker code of lengttv = 13 is shown. In Table V, all the known binary Barker codes are
reported.

One of the main drawbacks of the Barker codes is that they ptenized only for the
autocorrelation function, i.e. the chosen peak-to-pedklsbe ratio is valid only for the zero-

Doppler cut. Thus, if the target return is Doppler shifted sidelobe peaks are greater than the
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Figure 7a: Autocorrelation function of a phase-coded pulse usingliBelement Barker code.

Code length Code

11 or 10

110

1110 or 1101

11101

1110010

11 11100010010

13 1111100110101
Table V

All known binary Barker codes.

~N o~ W0N

expected. Otherwise stated, Barker codes exhibit a low [@opplerance. Figure 7b shows the
ambiguity function of a 13-element Barker code; notice that sidelobe peaks are higher than
1/N for many values of the Doppler shift and the main peak is lothan 1 for those Doppler

values.
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Figure 7b: Ambiguity function for a 13-element Barker code.

2) Polyphase Barker CodeS:he Barker codes are limited by the binary assumption. Aligw
any phase value can lead to lower sidelobes. In this waylgphasecode is realized. The
polyphaseN-sequence with minimal peak-to-sidelobe ratio excluding tutermost sidelobe
(which is always1/N, both for binary and polyphase codes) is caligeheralized Barker
sequenceor polyphase Barker sequencActually, systematic methods to produce polyphase
Barker sequences are not yet found; using numerical omiioiz techniques allow to search
such codes without restrictions on the values of the sequ@hases. Figure 8 shows the
autocorrelation function magnitude for the 13-elementyplohse Barker code. Notice that the
peak sidelode, whose magnitudeli&V, is located atr = +12/.

3) Frank Codes and extension$he Frank code [17] is derived from the phase history of a
linearly frequency stepped pulse; the Frank code is dedigmensure low sidelobe peaks even
for non zero-Doppler values. However, it applies only forqaare code lengthN = L?). The

elementsu,, (1 <n < N) of a N = L? Frank code are

Un—1)L+k = XP(JPnk) 1<n<L 1<k<L (16)
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Figure 8: Autocorrelation function of 13-element polyphase Barkede.

where¢,, , = 2m(n — 1)(k — 1)/L. The phase values in (16) can be obtained from the elements
of the L x L discrete matrix

[0 0 0 0o |
0 1 9 . L-1

0 2 4 Lo2L-1) |,
0 (L—1) 2(L—1) ... (L—1)

concatenating the rows and multiplying for/L; finally, the phase values are taken nibd

The Frank code has two important properties [1]:
1) it is perfect;
2) the autocorrelation function exhibits relatively lovdsiobes.

Figure 9 shows the ambiguity function forl&-elements Frank code.

“A phase code having zero periodic autocorrelation sidslibealledperfect
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Figure 9: Ambiguity function of 16-element Frank code.

The Frank code can be modified into the P1, P2 and PX codes thdthc frequencyterm
in the middle of the pulse instead of the beginning; also tleeliffred versions can be applied
only for square code length, i.e&V = L?. The PX code [18] yields the same aperiodic peak

sidelobe as the Frank code, but ensures a low integratelbisedkevel. The elements of the PX

code are defined as

S(n—1)L+k = eXP(jPn k) 1<n<L 1<k<L (17)
where
(2 (L +1 L+1
— | — =k ——n L even
L 2 2

2—7T(£—k) (ﬂ—n) I odd.
| L \2 2
In the same way as for the Frank code, it is possible to derivataix to form the phase values

for the PX code.
P2 code [19]-[20] can be constructed only fbreven and is defined exactly as the PX code.

This code is palindromic as it exhibits some specific symyngtoperties [1]. P1 code [19]-[20]

The dc frequency term is in correspondence to the zero-plase in the code.
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elements are defined using (17) where

oni= 7 (B3 =) =L+ (- ). (19)

The P1 code, unlike PX and P2 codes, is perfect, as the Frat&k dtie ambiguity function of
the P1 code for odd is identical to that of the Frank code. For eventhe ambiguity functions
of P2 and PX codes are very similar to the one of the P1 code land@the one of the Frank

code.

D. A Table with Some Common Radar Codes

There exist further coding strategies, different from thgsesented in the previous sub-
sections. The interested reader can consult the exceltait bf Levanon and Mozeson [1] for
a more complete description. Here, we just provide a tald®l€TVI, of course not exhaustive)

to summarize some common radar codes [21]-[35].
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Name Inventor Year Type
Barker Code R.H. Barker 1953 Phase Codes
Complementary Code M.J.E. Golay 1961 Complementary Phase Codes
Huffmann Code D.A.Huffmann 1962 Phase Code
Frank Code R.L. Frank, S.A. Zadoff 1962 Chirplike Phase Codes
Zadoff-Chu Code S.A. Zadoff 1963 Chirplike Phase Codes
Gold Code R. Gold 1967 Phased Code based on binary sequence
Minimum peaksidelobe code J. Lindner, N. Cohen et al. 1975 Phased Code based on binary sequence
Welti Code R. Sivaswamy 1978 Subcomplementary Code
P1 and P2 Codes B.L. Lewis, F.F. Kretschmer 1981 Phase Codes
Frank Polyphase Codes B.L. Lewis, F.F. Kretschmer 1983 Polyphase Codes
Costas Array J.P. Costas 1984 Frequency Codes
Quadratic congruential coding J.R. Bellegarda, E.L. balem 1988 Frequency Codes
Polyphase Barker Codes L. Bomer, M. Autweiler 1989 Phase Codes
Generalized P4 Code F.F. Kretshmer, K. Gerlach 1992 Phase Codes
Biphase Perfect Code S.W. Golomb 1992 Biphase Codes
Ipatov V.P. Ipatov 1992 Codes with minimal peak response loss
P(n,k) T. Felhauer 1994 Phase Codes
Px Code P.B. Rapajic, R.A. Kennedy 1998 Phase Codes
PONS based Complementary code P. Zulch, M. Wicks, et al. 2002 Complementary Codes
Orthogonal Codes N. Levanon, E. Mozeson 2003 Train of Orthogonal Coded Pulses
Multicarrier Phase Coded Pulse N. Levanon, E. Mozeson 2002 Multicarrier Phase Radar Signals
Table VI

Typical codes and their inventors.

V. COHERENT TRAIN OF DIVERSE PULSES

With reference to a train of coherent pulses, quite oftenpriactice, the pulses are modu-
lated and are not identical. Modulation produces a widedtédith, hence pulse compression.
Moreover, diversity between the pulses of the train can lpgoged to obtain advantages such
as lower delay sidelobes or lower recurrent lobes. The iadddaf a modulation, keeping the
pulses identical, leads to an analytic expression for theiguty function. Adding a diversity
in amplitude or diverse modulations in the pulses usuallpires a numerical analysis (but for

in some simple cases), since the ambiguity function is oadjlable as an integral function.
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Figure 10: Partial ambiguity function|¢| < ¢,) of a coherent uniform train of eight LFM pulsés? = 20, and
Tr = 9t,.

A train of identical LFM pulses provides both a good range anglbod Doppler resolution
(probably the most used radar signal in airborne applingjioHowever its ambiguity function
(Figure 10) still presents significant sidelobes both irageind in Doppler.

Performing an interpulse amplitude weighting permits tuee the Doppler sidelobes at the
price of a larger Doppler main lobe (at = 0) and recurrent lobes. Similarly, an intrapulse
weighting in LFM mitigates range sidelobes. The aforenmr@d weightings can be thus com-
bined to reduce both range and Doppler sidelobes.

Another method for diversifying the identical pulse traglies on staggering the Pulse Rep-
etition Frequency (PRF) obtaining a mitigation of the blsmkeds problem.

Exploiting a pulse-to-pulse diversity can lead to:

« a reduction in the height of the recurrent (range) lobes efatutocorrelation function (i.e.

aroundr = nTg, n = +1,42,...);

. a reduction of near range sidelobes (i.e. arolnda< ¢,);

« an increase in the overall bandwidth of the signal while r@iing relatively narrow

instantaneous bandwidth.

In this context we mention the stepped-frequency pulse tpahich consists of adding a fre-
guency step\ / between consecutive pulses) as an efficient way to obtaje @rerall bandwidth
(hence improved range resolution), while maintainingtineddy narrow instantaneous bandwidth

[36]. Moreover, a careful selection of the frequency stegpand LFM slopes can possibly
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eliminate the ambiguous peaks of the autocorrelation fondB7]-[38] (of course complying

with the unitary volume constraint).

VI. CONCLUSIONS

In this lecture, we have presented an overview of the basiryhof radar waveforms. First of
all, we have provided the concept of ambiguity function aadehdiscussed its relevant properties.
Then, we have reviewed the most common radar signals tagettetheir ambiguity functions.
The effects of a possible signal coding has been describggkeaal attention has been deserved
to the class of frequency coded waveforms through a Costaeree. Their construction, relying
upon the theory of Galois fields, as well as the desirable got@s deriving from the use of
a Costas-pushing sequence are discussed. In the last ptme décture, we have considered
coherent pulse trains of diverse pulses and have discussezffects of modulating the different
parameters of the train.

Before concluding, we highlight that one of the trade-offsadar signal design is between
constant modulus and ambiguity function sidelobes. EfiicRF power amplifiers are presently
operating at saturation and do not allow linear changes wliainde. On the other hand, sidelobe
reduction in range or Doppler usually require amplitudgataoms (weighting).

Another conflict involving a linear power amplifier relateariable amplitude and spectrum.
The spectrum of constant amplitude pulse signal exhildtslebes which decay very slowly. Such
behavior may often violate spectrum emission regulatiortscan possibly cause interference to
neighboring radars and/or other telecommunication appar&®n the contrary, suitable variable
amplitude pulses are characterized by a rapid decay of thetrsp tails.

Further radar waveforms with variable amplitude are thefidah-coded signal and the mul-
ticarrier signals [1]. These two examples show that rengvite constant amplitude restriction
provides signals with additional degrees of freedom whigh be exploited to further optimize

the system performance.
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